Code for Quiz 6, more dplyr and our first interactive chart using echarts4r
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New …
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366…
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666…
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163…
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321…
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488…
$ year <int> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti…
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000, …
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000, …
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3640…
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3390…
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000, …
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, …
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2…
$ year <int> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, …
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dru…
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
ticker
, year
, grossmargin
-Extract observations for 2018
-Assign output to drug_subset
-For ‘health_cos select’ (in this order): ticker
, year
, revenue
, gp
, industry
-Extract observations for 2018
-Assign output to health_subset
ticker year grossmargin revenue gp
1 ZTS 2018 0.672 5825000000 3914000000
2 PRGO 2018 0.387 4731700000 1831500000
3 PFE 2018 0.790 53647000000 42399000000
4 MYL 2018 0.350 11433900000 4001600000
5 MRK 2018 0.681 42294000000 28785000000
6 LLY 2018 0.738 24555700000 18125700000
7 JNJ 2018 0.668 81581000000 54490000000
8 GILD 2018 0.781 22127000000 17274000000
9 BMY 2018 0.710 22561000000 16014000000
10 BIIB 2018 0.865 13452900000 11636600000
11 AMGN 2018 0.827 23747000000 19646000000
12 AGN 2018 0.861 15787400000 13596000000
13 ABBV 2018 0.764 32753000000 25035000000
industry
1 Drug Manufacturers - Specialty & Generic
2 Drug Manufacturers - Specialty & Generic
3 Drug Manufacturers - General
4 Drug Manufacturers - Specialty & Generic
5 Drug Manufacturers - General
6 Drug Manufacturers - General
7 Drug Manufacturers - General
8 Drug Manufacturers - General
9 Drug Manufacturers - General
10 Drug Manufacturers - General
11 Drug Manufacturers - General
12 Drug Manufacturers - General
13 Drug Manufacturers - General
start with ‘drug_cos’
Extract observations for the ticker MYL from drug_cos
Assign output to the variable drug_cos_subset
Display drug_cos_subset
drug_cos_subset
ticker name location ebitdamargin grossmargin netmargin
1 MYL Mylan NV United Kingdom 0.245 0.418 0.088
2 MYL Mylan NV United Kingdom 0.244 0.428 0.094
3 MYL Mylan NV United Kingdom 0.228 0.440 0.090
4 MYL Mylan NV United Kingdom 0.242 0.457 0.120
5 MYL Mylan NV United Kingdom 0.243 0.447 0.090
6 MYL Mylan NV United Kingdom 0.190 0.424 0.043
7 MYL Mylan NV United Kingdom 0.272 0.402 0.058
8 MYL Mylan NV United Kingdom 0.258 0.350 0.031
ros roe year
1 0.161 0.146 2011
2 0.163 0.184 2012
3 0.153 0.209 2013
4 0.169 0.283 2014
5 0.133 0.089 2015
6 0.052 0.044 2016
7 0.121 0.054 2017
8 0.074 0.028 2018
Use left_join to combine the rows and colums of drug_cos_subset
with the colums of health_cos
Assign the output to combo_df
co_industry
groupPut the r incline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text
The company Mylan NV is located in United Kingdom and is a member of the Drug Manufacturers - Specialty & Generic industry group
*Start with combo_df
Select variables (in this order) year
, grossmargin
, netmargin
, revenue
, gp
, netincome
Assaign the output to combo_df_subset
combo_df_subset
combo_df_subset
year grossmargin netmargin revenue gp netincome
1 2011 0.418 0.088 6129825000 2563364000 536810000
2 2012 0.428 0.094 6796100000 2908300000 640900000
3 2013 0.440 0.090 6909100000 3040300000 623700000
4 2014 0.457 0.120 7719600000 3528000000 929400000
5 2015 0.447 0.090 9429300000 4216100000 847600000
6 2016 0.424 0.043 11076900000 4697000000 480000000
7 2017 0.402 0.058 11907700000 4783100000 696000000
8 2018 0.350 0.031 11433900000 4001600000 352500000
Create the variable grossmargin_check to compare with the variable grossmargin. They should be equal.
grossmargin_check = gp / revenue
*Create the variable close_enough to check that the absolute value of the difference between grossmargin_check and grossmargin is less than 0.001
combo_df_subset %>%
mutate(grossmargin_check =gp / revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
year grossmargin netmargin revenue gp netincome
1 2011 0.418 0.088 6129825000 2563364000 536810000
2 2012 0.428 0.094 6796100000 2908300000 640900000
3 2013 0.440 0.090 6909100000 3040300000 623700000
4 2014 0.457 0.120 7719600000 3528000000 929400000
5 2015 0.447 0.090 9429300000 4216100000 847600000
6 2016 0.424 0.043 11076900000 4697000000 480000000
7 2017 0.402 0.058 11907700000 4783100000 696000000
8 2018 0.350 0.031 11433900000 4001600000 352500000
grossmargin_check close_enough
1 0.4181790 TRUE
2 0.4279366 TRUE
3 0.4400428 TRUE
4 0.4570185 TRUE
5 0.4471276 TRUE
6 0.4240356 TRUE
7 0.4016813 TRUE
8 0.3499768 TRUE
Create the variable netmargin_check to compare with the variable netmargin. They should be equal.
Create the variable close_enough to check that the absolute value of the difference between netmargin_check and netmargin is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome / revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
year grossmargin netmargin revenue gp netincome
1 2011 0.418 0.088 6129825000 2563364000 536810000
2 2012 0.428 0.094 6796100000 2908300000 640900000
3 2013 0.440 0.090 6909100000 3040300000 623700000
4 2014 0.457 0.120 7719600000 3528000000 929400000
5 2015 0.447 0.090 9429300000 4216100000 847600000
6 2016 0.424 0.043 11076900000 4697000000 480000000
7 2017 0.402 0.058 11907700000 4783100000 696000000
8 2018 0.350 0.031 11433900000 4001600000 352500000
netmargin_check close_enough
1 0.08757346 TRUE
2 0.09430409 TRUE
3 0.09027225 TRUE
4 0.12039484 TRUE
5 0.08989002 TRUE
6 0.04333342 TRUE
7 0.05844957 TRUE
8 0.03082938 TRUE
Fill in the blanks
Put the command you use in the Rchunks in the Rmd file for this quiz
Use the health_cos
data
For each industry calculate
mean_netmargin_percent = mean(netincome / revenue) * 100
median_netmargin_percent = median(netincome / revenue) * 100
min_netmargin_percent = min(netincome / revenue) * 100
max_netmargin_percent = max(netincome / revenue) * 100
health_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
median_netmargin_percent = median(netincome / revenue) * 100,
min_netmargin_percent = min(netincome / revenue) * 100,
max_netmargin_percent = max(netincome / revenue) * 100)
# A tibble: 9 × 5
industry mean_netmargin_… median_netmargi… min_netmargin_p…
<chr> <dbl> <dbl> <dbl>
1 Biotechnology -4.66 7.62 -197.
2 Diagnostics & Re… 13.1 12.3 0.399
3 Drug Manufacture… 19.4 19.5 -34.9
4 Drug Manufacture… 5.88 9.01 -76.0
5 Healthcare Plans 3.28 3.37 -0.305
6 Medical Care Fac… 6.10 6.46 1.40
7 Medical Devices 12.4 14.3 -56.1
8 Medical Distribu… 1.70 1.03 -0.102
9 Medical Instrume… 12.3 14.0 -47.1
# … with 1 more variable: max_netmargin_percent <dbl>
Fill in the blanks
Use the health_cos data
Extract observations for the ticker ZTS
from health_cos and assign to the variable health_cos_subset
health_cos_subset
ticker name revenue gp rnd netincome assets
1 ZTS Zoetis Inc 4.233e+09 2.581e+09 4.27e+08 2.450e+08 5.7110e+09
2 ZTS Zoetis Inc 4.336e+09 2.773e+09 4.09e+08 4.360e+08 6.2620e+09
3 ZTS Zoetis Inc 4.561e+09 2.892e+09 3.99e+08 5.040e+08 6.5580e+09
4 ZTS Zoetis Inc 4.785e+09 3.068e+09 3.96e+08 5.830e+08 6.5880e+09
5 ZTS Zoetis Inc 4.765e+09 3.027e+09 3.64e+08 3.390e+08 7.9130e+09
6 ZTS Zoetis Inc 4.888e+09 3.222e+09 3.76e+08 8.210e+08 7.6490e+09
7 ZTS Zoetis Inc 5.307e+09 3.532e+09 3.82e+08 8.640e+08 8.5860e+09
8 ZTS Zoetis Inc 5.825e+09 3.914e+09 4.32e+08 1.428e+09 1.0777e+10
liabilities marketcap year
1 1.975e+09 NA 2011
2 2.221e+09 NA 2012
3 5.596e+09 16345223371 2013
4 5.251e+09 21572007994 2014
5 6.822e+09 23860348635 2015
6 6.150e+09 26434855920 2016
7 6.800e+09 35104245170 2017
8 8.592e+09 41097768446 2018
industry
1 Drug Manufacturers - Specialty & Generic
2 Drug Manufacturers - Specialty & Generic
3 Drug Manufacturers - Specialty & Generic
4 Drug Manufacturers - Specialty & Generic
5 Drug Manufacturers - Specialty & Generic
6 Drug Manufacturers - Specialty & Generic
7 Drug Manufacturers - Specialty & Generic
8 Drug Manufacturers - Specialty & Generic
Run the code below
co_name
You can take output from your code and include it in your text.
The name of the company with ticker ZTS is Zoetis Inc
Assign the company’s industry group to the variable co_industry
This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Zoetis Inc is a member of the Drug Manufacturers - Specialty & Generic group.
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Drug…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, …
ggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev ),
y = med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL) +
theme_classic()
df %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("infographic")