5: Joining Data

Code for Quiz 6, more dplyr and our first interactive chart using echarts4r

Steps 1-6

  1. Load the R packages we will use
  1. Read the data in the files, drug_cos.csv, health_cos.csv in to R and assign to the variables drug_cos and health_cos, respectively
drug_cos <- read.csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read.csv("https://estanny.com/static/week6/health_cos.csv")
  1. Use glimpse to get a glimpse of the data
drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New …
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366…
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666…
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163…
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321…
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488…
$ year         <int> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker      <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",…
$ name        <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti…
$ revenue     <dbl> 4233000000, 4336000000, 4561000000, 4785000000, …
$ gp          <dbl> 2581000000, 2773000000, 2892000000, 3068000000, …
$ rnd         <dbl> 427000000, 409000000, 399000000, 396000000, 3640…
$ netincome   <dbl> 245000000, 436000000, 504000000, 583000000, 3390…
$ assets      <dbl> 5711000000, 6262000000, 6558000000, 6588000000, …
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, …
$ marketcap   <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2…
$ year        <int> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, …
$ industry    <chr> "Drug Manufacturers - Specialty & Generic", "Dru…
  1. Which variables are the same in both data sets
names_drug  <- drug_cos  %>% names()
names_health  <- health_cos  %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name"   "year"  
  1. Select subset of variables to work with -For ‘drug_cos’ select (in this order): ticker, year, grossmargin

-Extract observations for 2018

-Assign output to drug_subset

-For ‘health_cos select’ (in this order): ticker, year, revenue, gp, industry

-Extract observations for 2018

-Assign output to health_subset

drug_subset  <- drug_cos  %>% 
  select(ticker, year, grossmargin)  %>% 
  filter(year == 2018)

health_subset  <- health_cos  %>% 
  select(ticker, year, revenue, gp, industry)  %>% 
  filter(year == 2018)
  1. Keep all the rows and columns drug_subset join with columns in health_subset
drug_subset  %>% left_join(health_subset)
   ticker year grossmargin     revenue          gp
1     ZTS 2018       0.672  5825000000  3914000000
2    PRGO 2018       0.387  4731700000  1831500000
3     PFE 2018       0.790 53647000000 42399000000
4     MYL 2018       0.350 11433900000  4001600000
5     MRK 2018       0.681 42294000000 28785000000
6     LLY 2018       0.738 24555700000 18125700000
7     JNJ 2018       0.668 81581000000 54490000000
8    GILD 2018       0.781 22127000000 17274000000
9     BMY 2018       0.710 22561000000 16014000000
10   BIIB 2018       0.865 13452900000 11636600000
11   AMGN 2018       0.827 23747000000 19646000000
12    AGN 2018       0.861 15787400000 13596000000
13   ABBV 2018       0.764 32753000000 25035000000
                                   industry
1  Drug Manufacturers - Specialty & Generic
2  Drug Manufacturers - Specialty & Generic
3              Drug Manufacturers - General
4  Drug Manufacturers - Specialty & Generic
5              Drug Manufacturers - General
6              Drug Manufacturers - General
7              Drug Manufacturers - General
8              Drug Manufacturers - General
9              Drug Manufacturers - General
10             Drug Manufacturers - General
11             Drug Manufacturers - General
12             Drug Manufacturers - General
13             Drug Manufacturers - General

Question: join_ticker

start with ‘drug_cos’

Extract observations for the ticker MYL from drug_cos

Assign output to the variable drug_cos_subset

drug_cos_subset  <- drug_cos  %>% 
  filter(ticker == "MYL")

Display drug_cos_subset

drug_cos_subset
  ticker     name       location ebitdamargin grossmargin netmargin
1    MYL Mylan NV United Kingdom        0.245       0.418     0.088
2    MYL Mylan NV United Kingdom        0.244       0.428     0.094
3    MYL Mylan NV United Kingdom        0.228       0.440     0.090
4    MYL Mylan NV United Kingdom        0.242       0.457     0.120
5    MYL Mylan NV United Kingdom        0.243       0.447     0.090
6    MYL Mylan NV United Kingdom        0.190       0.424     0.043
7    MYL Mylan NV United Kingdom        0.272       0.402     0.058
8    MYL Mylan NV United Kingdom        0.258       0.350     0.031
    ros   roe year
1 0.161 0.146 2011
2 0.163 0.184 2012
3 0.153 0.209 2013
4 0.169 0.283 2014
5 0.133 0.089 2015
6 0.052 0.044 2016
7 0.121 0.054 2017
8 0.074 0.028 2018
combo_df <- drug_cos_subset %>% 
  left_join(health_cos)

co_name <- combo_df %>% 
  distinct(name) %>% 
  pull()

co_location <- combo_df %>% 
  distinct(location) %>% 
  pull()

co_industry <- combo_df %>% 
  distinct(industry) %>% 
  pull()

Put the r incline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text

The company Mylan NV is located in United Kingdom and is a member of the Drug Manufacturers - Specialty & Generic industry group


*Start with combo_df

combo_df_subset  <- combo_df  %>% 
  select(year, grossmargin, netmargin, 
  revenue, gp, netincome)

combo_df_subset
  year grossmargin netmargin     revenue         gp netincome
1 2011       0.418     0.088  6129825000 2563364000 536810000
2 2012       0.428     0.094  6796100000 2908300000 640900000
3 2013       0.440     0.090  6909100000 3040300000 623700000
4 2014       0.457     0.120  7719600000 3528000000 929400000
5 2015       0.447     0.090  9429300000 4216100000 847600000
6 2016       0.424     0.043 11076900000 4697000000 480000000
7 2017       0.402     0.058 11907700000 4783100000 696000000
8 2018       0.350     0.031 11433900000 4001600000 352500000

*Create the variable close_enough to check that the absolute value of the difference between grossmargin_check and grossmargin is less than 0.001

combo_df_subset  %>% 
  mutate(grossmargin_check =gp / revenue,
  close_enough = abs(grossmargin_check - grossmargin) < 0.001)
  year grossmargin netmargin     revenue         gp netincome
1 2011       0.418     0.088  6129825000 2563364000 536810000
2 2012       0.428     0.094  6796100000 2908300000 640900000
3 2013       0.440     0.090  6909100000 3040300000 623700000
4 2014       0.457     0.120  7719600000 3528000000 929400000
5 2015       0.447     0.090  9429300000 4216100000 847600000
6 2016       0.424     0.043 11076900000 4697000000 480000000
7 2017       0.402     0.058 11907700000 4783100000 696000000
8 2018       0.350     0.031 11433900000 4001600000 352500000
  grossmargin_check close_enough
1         0.4181790         TRUE
2         0.4279366         TRUE
3         0.4400428         TRUE
4         0.4570185         TRUE
5         0.4471276         TRUE
6         0.4240356         TRUE
7         0.4016813         TRUE
8         0.3499768         TRUE
combo_df_subset  %>% 
  mutate(netmargin_check = netincome / revenue,
  close_enough = abs(netmargin_check - netmargin) < 0.001)
  year grossmargin netmargin     revenue         gp netincome
1 2011       0.418     0.088  6129825000 2563364000 536810000
2 2012       0.428     0.094  6796100000 2908300000 640900000
3 2013       0.440     0.090  6909100000 3040300000 623700000
4 2014       0.457     0.120  7719600000 3528000000 929400000
5 2015       0.447     0.090  9429300000 4216100000 847600000
6 2016       0.424     0.043 11076900000 4697000000 480000000
7 2017       0.402     0.058 11907700000 4783100000 696000000
8 2018       0.350     0.031 11433900000 4001600000 352500000
  netmargin_check close_enough
1      0.08757346         TRUE
2      0.09430409         TRUE
3      0.09027225         TRUE
4      0.12039484         TRUE
5      0.08989002         TRUE
6      0.04333342         TRUE
7      0.05844957         TRUE
8      0.03082938         TRUE

Question: summarize_industry

health_cos %>% 
  group_by(industry) %>% 
  summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
            median_netmargin_percent = median(netincome / revenue) * 100,
            min_netmargin_percent = min(netincome / revenue) * 100,
            max_netmargin_percent = max(netincome / revenue) * 100)
# A tibble: 9 × 5
  industry          mean_netmargin_… median_netmargi… min_netmargin_p…
  <chr>                        <dbl>            <dbl>            <dbl>
1 Biotechnology                -4.66             7.62         -197.   
2 Diagnostics & Re…            13.1             12.3             0.399
3 Drug Manufacture…            19.4             19.5           -34.9  
4 Drug Manufacture…             5.88             9.01          -76.0  
5 Healthcare Plans              3.28             3.37           -0.305
6 Medical Care Fac…             6.10             6.46            1.40 
7 Medical Devices              12.4             14.3           -56.1  
8 Medical Distribu…             1.70             1.03           -0.102
9 Medical Instrume…            12.3             14.0           -47.1  
# … with 1 more variable: max_netmargin_percent <dbl>

Question: inline_ticker

health_cos_subset  <- health_cos  %>% 
  filter(ticker == "ZTS")
health_cos_subset
  ticker       name   revenue        gp      rnd netincome     assets
1    ZTS Zoetis Inc 4.233e+09 2.581e+09 4.27e+08 2.450e+08 5.7110e+09
2    ZTS Zoetis Inc 4.336e+09 2.773e+09 4.09e+08 4.360e+08 6.2620e+09
3    ZTS Zoetis Inc 4.561e+09 2.892e+09 3.99e+08 5.040e+08 6.5580e+09
4    ZTS Zoetis Inc 4.785e+09 3.068e+09 3.96e+08 5.830e+08 6.5880e+09
5    ZTS Zoetis Inc 4.765e+09 3.027e+09 3.64e+08 3.390e+08 7.9130e+09
6    ZTS Zoetis Inc 4.888e+09 3.222e+09 3.76e+08 8.210e+08 7.6490e+09
7    ZTS Zoetis Inc 5.307e+09 3.532e+09 3.82e+08 8.640e+08 8.5860e+09
8    ZTS Zoetis Inc 5.825e+09 3.914e+09 4.32e+08 1.428e+09 1.0777e+10
  liabilities   marketcap year
1   1.975e+09          NA 2011
2   2.221e+09          NA 2012
3   5.596e+09 16345223371 2013
4   5.251e+09 21572007994 2014
5   6.822e+09 23860348635 2015
6   6.150e+09 26434855920 2016
7   6.800e+09 35104245170 2017
8   8.592e+09 41097768446 2018
                                  industry
1 Drug Manufacturers - Specialty & Generic
2 Drug Manufacturers - Specialty & Generic
3 Drug Manufacturers - Specialty & Generic
4 Drug Manufacturers - Specialty & Generic
5 Drug Manufacturers - Specialty & Generic
6 Drug Manufacturers - Specialty & Generic
7 Drug Manufacturers - Specialty & Generic
8 Drug Manufacturers - Specialty & Generic

Run the code below

health_cos_subset  %>% 
  distinct(name) %>% 
  pull(name)
[1] "Zoetis Inc"
co_name  <- health_cos_subset  %>% 
  distinct(name) %>% 
  pull(name)

You can take output from your code and include it in your text.

co_industry  <- health_cos_subset  %>% 
  distinct(industry) %>% 
  pull()

This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.

The company Zoetis Inc is a member of the Drug Manufacturers - Specialty & Generic group.

  1. Prepare the data for the plots
df <- health_cos  %>% 
  group_by(industry)  %>%
  summarize(med_rnd_rev = median(rnd/revenue))
  1. Use glimpse to glimpse the data for the plots
df  %>% glimpse()
Rows: 9
Columns: 2
$ industry    <chr> "Biotechnology", "Diagnostics & Research", "Drug…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, …
  1. Create a static bar chart
ggplot(data = df, 
       mapping = aes(
         x = reorder(industry, med_rnd_rev ),
         y = med_rnd_rev
         )) +
  geom_col() + 
  scale_y_continuous(labels = scales::percent) +
  coord_flip() +
  labs(
    title = "Median R&D expenditures",
    subtitle = "by industry as a percent of revenue from 2011 to 2018",
    x = NULL, y = NULL) +
  theme_classic()

  1. Save the previous plot to preview.png and add to the yaml chunk at the top
ggsave(filename = "preview.png", 
       path = here::here("_posts", "2022-03-07-joining-data"))
  1. Create an interactive bar chart using the package echarts4r
df  %>% 
  arrange(med_rnd_rev)  %>%
  e_charts(
    x = industry
    )  %>% 
  e_bar(
    serie = med_rnd_rev, 
    name = "median"
    )  %>%
  e_flip_coords()  %>% 
  e_tooltip()  %>% 
  e_title(
    text = "Median industry R&D expenditures", 
    subtext = "by industry as a percent of revenue from 2011 to 2018",
    left = "center") %>% 
  e_legend(FALSE) %>% 
  e_x_axis(
    formatter = e_axis_formatter("percent", digits = 0)
    )  %>%
  e_y_axis(
    show = FALSE
  )  %>% 
  e_theme("infographic")